m_n_kappa.solver.Newton#

class m_n_kappa.solver.Newton(data, target, variable)#

Bases: Solver

Solver using the newton method

New in version 0.1.0.

Parameters:
  • data (list[dict] | list[list]) – data containing target and variable keys

  • target (str | int) – key of the target (e.g. str for dictionaries or int for lists)

  • variable (str | int) – variable of the target (e.g. str for dictionaries or int for lists)

Methods

compute([use_fallback])

compute a new value using the newton algorithm

Attributes

data

passed data

function

function to compute x_n_plus_1

maximum_variable

maximum variable value given in data

minimum_variable

minimum variable value given in data

target

key of the target in data

variable

key of the variable in data

x_n

lastly computed variable value

x_n_plus_1

new computed value

compute(use_fallback=False)#

compute a new value using the newton algorithm

In case the newton algorithm does not lead to an optimization of the variable value then bi-section will be used as fallback. Optimization means improvement of variable-value leading to a target-value nearer zero.

Parameters:

use_fallback (bool) – use the fallback algorithm (i.e. Bisection)

Returns:

computed new value leading to target-value nearer zero

Return type:

float

See also

Bisection

Solver-class using bi-sectional approach

property data: list#

passed data

property function#

function to compute x_n_plus_1

property maximum_variable: float#

maximum variable value given in data

property minimum_variable: float#

minimum variable value given in data

property target: str | int#

key of the target in data

property variable: str | int#

key of the variable in data

property x_n: float#

lastly computed variable value

property x_n_plus_1: float#

new computed value