m_n_kappa.solver.Newton#
- class m_n_kappa.solver.Newton(data, target, variable)#
Bases:
Solver
Solver using the newton method
New in version 0.1.0.
- Parameters:
data (list[dict] | list[list]) – data containing target and variable keys
target (str | int) – key of the target (e.g. str for dictionaries or int for lists)
variable (str | int) – variable of the target (e.g. str for dictionaries or int for lists)
Methods
compute
([use_fallback])compute a new value using the newton algorithm
Attributes
passed data
function to compute
x_n_plus_1
maximum variable value given in
data
minimum variable value given in
data
key of the target in
data
key of the variable in
data
lastly computed variable value
new computed value
- compute(use_fallback=False)#
compute a new value using the newton algorithm
In case the newton algorithm does not lead to an optimization of the variable value then bi-section will be used as fallback. Optimization means improvement of variable-value leading to a target-value nearer zero.
- Parameters:
use_fallback (bool) – use the fallback algorithm (i.e.
Bisection
)- Returns:
computed new value leading to target-value nearer zero
- Return type:
float
- property data: list#
passed data
- property function#
function to compute
x_n_plus_1
- property maximum_variable: float#
maximum variable value given in
data
- property minimum_variable: float#
minimum variable value given in
data
- property target: str | int#
key of the target in
data
- property variable: str | int#
key of the variable in
data
- property x_n: float#
lastly computed variable value
- property x_n_plus_1: float#
new computed value