m_n_kappa.material.ConcreteCompressionParabolaRectangle#
- class m_n_kappa.material.ConcreteCompressionParabolaRectangle(f_cm, E_cm)#
Bases:
ConcreteCompression
parabola-rectangle behaviour of concrete under compression according to EN 1992-1-1 [1]
New in version 0.1.0.
- Parameters:
f_cm (float) – mean concrete cylinder compressive strength \(f_\mathrm{cm}\)
E_cm (float) – mean elasticity modulus of concrete \(E_\mathrm{cm}\)
See also
ConcreteCompressionNonlinear
Describes non-linear behaviour of concrete under compression
ConcreteCompressionBiLinear
describes bi-linear behaviour of concrete under compression
Notes
The formula for computation of the parabola-rectangle behaviour of concrete by EN 1992-1-1 [1], Formula 3.17 is given as follows. Formula (1) is valid in the range \(0 < |\varepsilon| < |\varepsilon_\mathrm{c}|\). The here given values are all absolute values. As this model applies to the compression-range all values must be multiplied by (-1).
(1)#\[ \begin{align}\begin{aligned}\sigma_\mathrm{c} & = f_\mathrm{c} \cdot \left[1 - \left(1 - \frac{\varepsilon}{\varepsilon_\mathrm{c}} \right)^{n} \right] & & \text{ for } 0 \leq \varepsilon \leq \varepsilon_\mathrm{c}\\\sigma_\mathrm{c} & = f_\mathrm{c} & & \text{ for } \varepsilon_\mathrm{c} \leq \varepsilon \leq \varepsilon_\mathrm{cu}\end{aligned}\end{align} \]where
(2)#\[ \begin{align}\begin{aligned}\text{ for } f_\mathrm{ck} \leq 50 \text{ N/mm :sup:`2`}: &\\& \varepsilon_\mathrm{c}(Permil) = 2.0\\& \varepsilon_\mathrm{cu}(Permil) = 3.5\\& n = 2.0\\\text{for } f_\mathrm{ck} \geq 50 \text{ N/mm :sup:`2`} &\\& \varepsilon_\mathrm{c}(Permil) = 2.0 + 0.085 \cdot (f_\mathrm{ck} - 50)^{0.53}\\& \varepsilon_\mathrm{cu}(Permil) = 2.6 + 35 \left[\frac{90-f_\mathrm{ck}}{100} \right]^{4}\\& n = 1.4 + 23.4 \cdot \left[ \frac{90-f_\mathrm{ck}}{100} \right]\end{aligned}\end{align} \]where \(\varepsilon_\mathrm{c}\) is the strain at peak stress and \(\varepsilon_\mathrm{cu}\) is the strain at failure.
References
Examples
The stress-strain relationship of concrete under compression is computed as follows.
>>> from m_n_kappa.material import ConcreteCompressionParabolaRectangle >>> f_cm = 30.0 # mean concrete compressive strength >>> E_cm = 33000 # modulus of elasticity of concrete >>> concrete = ConcreteCompressionParabolaRectangle(f_cm=f_cm, E_cm=E_cm) >>> concrete.stress_strain() [[-9.625, -0.0005], [-16.5, -0.001], [-20.625, -0.0015], [-22.0, -0.002], [-22.0, -0.0035]]
Methods
stress
(strain)computation of stresses according to formula (1)
stress-strain points of the material
Attributes
mean elasticity modulus of concrete \(E_\mathrm{cm}\)
strain at peak stress \(\varepsilon_\mathrm{c}\) (see Formula (2))
failure strain of concrete \(\varepsilon_\mathrm{cu}\) (see Formula (2))
characteristic concrete cylinder compressive strength \(f_\mathrm{ck}\)
mean concrete cylinder compressive strength \(f_\mathrm{cm}\)
Strain-values where stresses are computed.
strain up to which the concrete is assumed to be linear-elastic \(\varepsilon_\mathrm{y}\)
- stress(strain)#
computation of stresses according to formula (1)
- Parameters:
strain (float) – strain to compute corresponding stress
- Returns:
stress to the given
strain
- Return type:
float
- stress_strain()#
stress-strain points of the material
- Return type:
list
- property E_cm: float#
mean elasticity modulus of concrete \(E_\mathrm{cm}\)
- property f_ck: float#
characteristic concrete cylinder compressive strength \(f_\mathrm{ck}\)
- property f_cm: float#
mean concrete cylinder compressive strength \(f_\mathrm{cm}\)
- property strains: list#
Strain-values where stresses are computed.
Current strain-values are:
\(0.25 \cdot \varepsilon_\mathrm{c}\)
\(0.50 \cdot \varepsilon_\mathrm{c}\)
\(0.75 \cdot \varepsilon_\mathrm{c}\)
\(\varepsilon_\mathrm{c}\)
\(\varepsilon_\mathrm{cu}\)
- property yield_strain: float#
strain up to which the concrete is assumed to be linear-elastic \(\varepsilon_\mathrm{y}\)