m_n_kappa.Reinforcement#

class m_n_kappa.Reinforcement(f_s=None, f_su=None, failure_strain=None, E_s=200000.0)#

Bases: Steel

Reinforcement material

Parameters:
  • f_s (float) – Yield strength of the reinforcement \(f_\mathrm{s}\) (Default: None)

  • f_su (float) – Tensile strength of the reinforcement \(f_\mathrm{su}\) (Default: None)

  • failure_strain (float) – Tensile strain of the reinforcement \(\varepsilon_\mathrm{su}\) (Default: None)

  • E_s (float) – Modulus of elasticity of the reinforcement \(E_\mathrm{s}\) (Default: 200000 N/mm 2)

See also

Concrete

material-behaviour of concrete

Steel

material-behaviour of steel

Examples

  1. f_su = None and epsilon_su = None: Linear-elastic behaviour.

>>> from m_n_kappa import Reinforcement
>>> elastic_reinforcement = Reinforcement()
>>> elastic_reinforcement.stress_strain
[StressStrain(stress=-200000.0, strain=-1.0), StressStrain(stress=-0.0, strain=-0.0), StressStrain(stress=200000.0, strain=1.0)]
  1. f_su = None: Bi-linear behaviour where f_su = f_s

>>> bilinear_reinforcement = Reinforcement(f_s=500.0, failure_strain=0.25)
>>> bilinear_reinforcement.stress_strain
[StressStrain(stress=-500.0, strain=-0.25), StressStrain(stress=-500.0, strain=-0.0025), StressStrain(stress=-0.0, strain=-0.0), StressStrain(stress=500.0, strain=0.0025), StressStrain(stress=500.0, strain=0.25)]
  1. All values are not none: Bi-linear behaviour with following stress-strain points (\(f_\mathrm{s}\) | \(\varepsilon_\mathrm{s}\)), (\(f_\mathrm{su}\) | \(\varepsilon_\mathrm{su}\)). Where the strain at yield is computed like \(\varepsilon_\mathrm{s} = f_\mathrm{s} / E_\mathrm{s}\)

>>> reinforcement = Reinforcement(f_s=500.0, f_su=550.0, failure_strain=0.25)
>>> reinforcement.stress_strain
[StressStrain(stress=-550.0, strain=-0.25), StressStrain(stress=-500.0, strain=-0.0025), StressStrain(stress=-0.0, strain=-0.0), StressStrain(stress=500.0, strain=0.0025), StressStrain(stress=550.0, strain=0.25)]

Methods

get_intermediate_strains(strain_1[, ...])

determine material points with strains between zero and given strain_value

get_material_stress(strain)

gives stress from the stress-strain_value-relationship corresponding with the given strain_value

sort_strains([reverse])

sorts stress-strain_value-relationship depending on strains

sort_strains_ascending()

sorts stress-strain_value-relationship so strains are ascending

sort_strains_descending()

sorts stress-strain_value-relationship so strains are descending

stress_strain_standard()

standard stress-strain-relationship

Attributes

E_a

modulus of elasticity \(E_\mathrm{a}\)

E_s

Modulus of elasticity of the reinforcement \(E_\mathrm{s}\)

compression_stress_strain

stress-strain-relationship under compression (negative sign)

epsilon_y

yield strength \(f_\mathrm{y}\)

f_s

Yield strength of the reinforcement \(f_\mathrm{s}\)

f_su

Tensile strength of the reinforcement \(f_\mathrm{su}\)

f_u

f_y

yield strength \(f_\mathrm{y}\)

failure_strain

Failure-strain of reinforcement \(\varepsilon_\mathrm{su}\)

maximum_strain

maximum strain_value in the stress-strain_value-relationship

minimum_strain

minimum strain_value in the stress-strain_value-relationship

section_type

section section_type

strains

strains from the stress-strain_value-relationship

stress_strain

list of stress-strain_value points

stress_strain_type

stresses

stresses from the stress-strain_value-relationship

tension_stress_strain

stress-strain-relationship under tension (positive sign)

get_intermediate_strains(strain_1, strain_2=0.0, include_strains=False)#

determine material points with strains between zero and given strain_value

Parameters:
  • strain_1 (float) – 1st strain-value

  • strain_2 (float) – 2nd strain-value (Default: 0.0)

  • include_strains (bool) – includes the boundary strain values (Default: False)

Returns:

determine material points with strains between zero and given strain_value

Return type:

list[float]

get_material_stress(strain)#

gives stress from the stress-strain_value-relationship corresponding with the given strain_value

Parameters:

strain (float) – strain_value a corresponding stress value should be given

Returns:

stress corresponding to the given strain-value in the material-model

Return type:

float

Raises:

ValueError – when strain is outside the boundary values of the material-model

sort_strains(reverse=False)#

sorts stress-strain_value-relationship depending on strains

Parameters:

reverse (bool) –

  • True: sorts strains descending

  • False: sorts strains ascending (Default)

Return type:

None

sort_strains_ascending()#

sorts stress-strain_value-relationship so strains are ascending

Return type:

None

sort_strains_descending()#

sorts stress-strain_value-relationship so strains are descending

Return type:

None

stress_strain_standard()#

standard stress-strain-relationship

Return type:

list

property E_a: float#

modulus of elasticity \(E_\mathrm{a}\)

property E_s: float#

Modulus of elasticity of the reinforcement \(E_\mathrm{s}\)

property compression_stress_strain: list#

stress-strain-relationship under compression (negative sign)

property epsilon_y: float#

yield strength \(f_\mathrm{y}\)

property f_s: float#

Yield strength of the reinforcement \(f_\mathrm{s}\)

property f_su: float#

Tensile strength of the reinforcement \(f_\mathrm{su}\)

property f_y: float#

yield strength \(f_\mathrm{y}\)

property failure_strain: float#

Failure-strain of reinforcement \(\varepsilon_\mathrm{su}\)

property maximum_strain: float#

maximum strain_value in the stress-strain_value-relationship

property minimum_strain: float#

minimum strain_value in the stress-strain_value-relationship

property section_type#

section section_type

property strains: list#

strains from the stress-strain_value-relationship

property stress_strain: list[m_n_kappa.material.StressStrain]#

list of stress-strain_value points

property stresses: list#

stresses from the stress-strain_value-relationship

property tension_stress_strain: list#

stress-strain-relationship under tension (positive sign)