m_n_kappa.Reinforcement#
- class m_n_kappa.Reinforcement(f_s=None, f_su=None, failure_strain=None, E_s=200000.0)#
Bases:
Steel
Reinforcement material
- Parameters:
f_s (float) – Yield strength of the reinforcement \(f_\mathrm{s}\) (Default: None)
f_su (float) – Tensile strength of the reinforcement \(f_\mathrm{su}\) (Default: None)
failure_strain (float) – Tensile strain of the reinforcement \(\varepsilon_\mathrm{su}\) (Default: None)
E_s (float) – Modulus of elasticity of the reinforcement \(E_\mathrm{s}\) (Default: 200000 N/mm 2)
Examples
f_su = None
andepsilon_su = None
: Linear-elastic behaviour.
>>> from m_n_kappa import Reinforcement >>> elastic_reinforcement = Reinforcement() >>> elastic_reinforcement.stress_strain [StressStrain(stress=-200000.0, strain=-1.0), StressStrain(stress=-0.0, strain=-0.0), StressStrain(stress=200000.0, strain=1.0)]
f_su = None
: Bi-linear behaviour wheref_su = f_s
>>> bilinear_reinforcement = Reinforcement(f_s=500.0, failure_strain=0.25) >>> bilinear_reinforcement.stress_strain [StressStrain(stress=-500.0, strain=-0.25), StressStrain(stress=-500.0, strain=-0.0025), StressStrain(stress=-0.0, strain=-0.0), StressStrain(stress=500.0, strain=0.0025), StressStrain(stress=500.0, strain=0.25)]
All values are not none: Bi-linear behaviour with following stress-strain points (\(f_\mathrm{s}\) | \(\varepsilon_\mathrm{s}\)), (\(f_\mathrm{su}\) | \(\varepsilon_\mathrm{su}\)). Where the strain at yield is computed like \(\varepsilon_\mathrm{s} = f_\mathrm{s} / E_\mathrm{s}\)
>>> reinforcement = Reinforcement(f_s=500.0, f_su=550.0, failure_strain=0.25) >>> reinforcement.stress_strain [StressStrain(stress=-550.0, strain=-0.25), StressStrain(stress=-500.0, strain=-0.0025), StressStrain(stress=-0.0, strain=-0.0), StressStrain(stress=500.0, strain=0.0025), StressStrain(stress=550.0, strain=0.25)]
Methods
get_intermediate_strains
(strain_1[, ...])determine material points with strains between zero and given strain_value
get_material_stress
(strain)gives stress from the stress-strain_value-relationship corresponding with the given strain_value
sort_strains
([reverse])sorts stress-strain_value-relationship depending on strains
sorts stress-strain_value-relationship so strains are ascending
sorts stress-strain_value-relationship so strains are descending
standard stress-strain-relationship
Attributes
modulus of elasticity \(E_\mathrm{a}\)
Modulus of elasticity of the reinforcement \(E_\mathrm{s}\)
stress-strain-relationship under compression (negative sign)
yield strength \(f_\mathrm{y}\)
Yield strength of the reinforcement \(f_\mathrm{s}\)
Tensile strength of the reinforcement \(f_\mathrm{su}\)
f_u
yield strength \(f_\mathrm{y}\)
Failure-strain of reinforcement \(\varepsilon_\mathrm{su}\)
maximum strain_value in the stress-strain_value-relationship
minimum strain_value in the stress-strain_value-relationship
section section_type
strains from the stress-strain_value-relationship
list of stress-strain_value points
stress_strain_type
stresses from the stress-strain_value-relationship
stress-strain-relationship under tension (positive sign)
- get_intermediate_strains(strain_1, strain_2=0.0, include_strains=False)#
determine material points with strains between zero and given strain_value
- Parameters:
strain_1 (float) – 1st strain-value
strain_2 (float) – 2nd strain-value (Default: 0.0)
include_strains (bool) – includes the boundary strain values (Default: False)
- Returns:
determine material points with strains between zero and given strain_value
- Return type:
list[float]
- get_material_stress(strain)#
gives stress from the stress-strain_value-relationship corresponding with the given strain_value
- Parameters:
strain (float) – strain_value a corresponding stress value should be given
- Returns:
stress corresponding to the given strain-value in the material-model
- Return type:
float
- Raises:
ValueError – when strain is outside the boundary values of the material-model
- sort_strains(reverse=False)#
sorts stress-strain_value-relationship depending on strains
- Parameters:
reverse (bool) –
True
: sorts strains descendingFalse
: sorts strains ascending (Default)
- Return type:
None
- sort_strains_ascending()#
sorts stress-strain_value-relationship so strains are ascending
- Return type:
None
- sort_strains_descending()#
sorts stress-strain_value-relationship so strains are descending
- Return type:
None
- stress_strain_standard()#
standard stress-strain-relationship
- Return type:
list
- property E_a: float#
modulus of elasticity \(E_\mathrm{a}\)
- property E_s: float#
Modulus of elasticity of the reinforcement \(E_\mathrm{s}\)
- property compression_stress_strain: list#
stress-strain-relationship under compression (negative sign)
- property epsilon_y: float#
yield strength \(f_\mathrm{y}\)
- property f_s: float#
Yield strength of the reinforcement \(f_\mathrm{s}\)
- property f_su: float#
Tensile strength of the reinforcement \(f_\mathrm{su}\)
- property f_y: float#
yield strength \(f_\mathrm{y}\)
- property failure_strain: float#
Failure-strain of reinforcement \(\varepsilon_\mathrm{su}\)
- property maximum_strain: float#
maximum strain_value in the stress-strain_value-relationship
- property minimum_strain: float#
minimum strain_value in the stress-strain_value-relationship
- property section_type#
section section_type
- property strains: list#
strains from the stress-strain_value-relationship
- property stress_strain: list[m_n_kappa.material.StressStrain]#
list of stress-strain_value points
- property stresses: list#
stresses from the stress-strain_value-relationship
- property tension_stress_strain: list#
stress-strain-relationship under tension (positive sign)