m_n_kappa.Reinforcement#
- class m_n_kappa.Reinforcement(f_s=None, f_su=None, failure_strain=None, E_s=200000.0)#
- Bases: - Steel- Reinforcement material - Parameters:
- f_s (float) – Yield strength of the reinforcement \(f_\mathrm{s}\) (Default: None) 
- f_su (float) – Tensile strength of the reinforcement \(f_\mathrm{su}\) (Default: None) 
- failure_strain (float) – Tensile strain of the reinforcement \(\varepsilon_\mathrm{su}\) (Default: None) 
- E_s (float) – Modulus of elasticity of the reinforcement \(E_\mathrm{s}\) (Default: 200000 N/mm 2) 
 
 - Examples - f_su = Noneand- epsilon_su = None: Linear-elastic behaviour.
 - >>> from m_n_kappa import Reinforcement >>> elastic_reinforcement = Reinforcement() >>> elastic_reinforcement.stress_strain [StressStrain(stress=-200000.0, strain=-1.0), StressStrain(stress=-0.0, strain=-0.0), StressStrain(stress=200000.0, strain=1.0)] - f_su = None: Bi-linear behaviour where- f_su = f_s
 - >>> bilinear_reinforcement = Reinforcement(f_s=500.0, failure_strain=0.25) >>> bilinear_reinforcement.stress_strain [StressStrain(stress=-500.0, strain=-0.25), StressStrain(stress=-500.0, strain=-0.0025), StressStrain(stress=-0.0, strain=-0.0), StressStrain(stress=500.0, strain=0.0025), StressStrain(stress=500.0, strain=0.25)] - All values are not none: Bi-linear behaviour with following stress-strain points (\(f_\mathrm{s}\) | \(\varepsilon_\mathrm{s}\)), (\(f_\mathrm{su}\) | \(\varepsilon_\mathrm{su}\)). Where the strain at yield is computed like \(\varepsilon_\mathrm{s} = f_\mathrm{s} / E_\mathrm{s}\) 
 - >>> reinforcement = Reinforcement(f_s=500.0, f_su=550.0, failure_strain=0.25) >>> reinforcement.stress_strain [StressStrain(stress=-550.0, strain=-0.25), StressStrain(stress=-500.0, strain=-0.0025), StressStrain(stress=-0.0, strain=-0.0), StressStrain(stress=500.0, strain=0.0025), StressStrain(stress=550.0, strain=0.25)] - Methods - get_intermediate_strains(strain_1[, ...])- determine material points with strains between zero and given strain_value - get_material_stress(strain)- gives stress from the stress-strain_value-relationship corresponding with the given strain_value - sort_strains([reverse])- sorts stress-strain_value-relationship depending on strains - sorts stress-strain_value-relationship so strains are ascending - sorts stress-strain_value-relationship so strains are descending - standard stress-strain-relationship - Attributes - modulus of elasticity \(E_\mathrm{a}\) - Modulus of elasticity of the reinforcement \(E_\mathrm{s}\) - stress-strain-relationship under compression (negative sign) - yield strength \(f_\mathrm{y}\) - Yield strength of the reinforcement \(f_\mathrm{s}\) - Tensile strength of the reinforcement \(f_\mathrm{su}\) - f_u- yield strength \(f_\mathrm{y}\) - Failure-strain of reinforcement \(\varepsilon_\mathrm{su}\) - maximum strain_value in the stress-strain_value-relationship - minimum strain_value in the stress-strain_value-relationship - section section_type - strains from the stress-strain_value-relationship - list of stress-strain_value points - stress_strain_type- stresses from the stress-strain_value-relationship - stress-strain-relationship under tension (positive sign) - get_intermediate_strains(strain_1, strain_2=0.0, include_strains=False)#
- determine material points with strains between zero and given strain_value - Parameters:
- strain_1 (float) – 1st strain-value 
- strain_2 (float) – 2nd strain-value (Default: 0.0) 
- include_strains (bool) – includes the boundary strain values (Default: False) 
 
- Returns:
- determine material points with strains between zero and given strain_value 
- Return type:
- list[float] 
 
 - get_material_stress(strain)#
- gives stress from the stress-strain_value-relationship corresponding with the given strain_value - Parameters:
- strain (float) – strain_value a corresponding stress value should be given 
- Returns:
- stress corresponding to the given strain-value in the material-model 
- Return type:
- float 
- Raises:
- ValueError – when strain is outside the boundary values of the material-model 
 
 - sort_strains(reverse=False)#
- sorts stress-strain_value-relationship depending on strains - Parameters:
- reverse (bool) – - True: sorts strains descending
- False: sorts strains ascending (Default)
 
- Return type:
- None 
 
 - sort_strains_ascending()#
- sorts stress-strain_value-relationship so strains are ascending - Return type:
- None 
 
 - sort_strains_descending()#
- sorts stress-strain_value-relationship so strains are descending - Return type:
- None 
 
 - stress_strain_standard()#
- standard stress-strain-relationship - Return type:
- list 
 
 - property E_a: float#
- modulus of elasticity \(E_\mathrm{a}\) 
 - property E_s: float#
- Modulus of elasticity of the reinforcement \(E_\mathrm{s}\) 
 - property compression_stress_strain: list#
- stress-strain-relationship under compression (negative sign) 
 - property epsilon_y: float#
- yield strength \(f_\mathrm{y}\) 
 - property f_s: float#
- Yield strength of the reinforcement \(f_\mathrm{s}\) 
 - property f_su: float#
- Tensile strength of the reinforcement \(f_\mathrm{su}\) 
 - property f_y: float#
- yield strength \(f_\mathrm{y}\) 
 - property failure_strain: float#
- Failure-strain of reinforcement \(\varepsilon_\mathrm{su}\) 
 - property maximum_strain: float#
- maximum strain_value in the stress-strain_value-relationship 
 - property minimum_strain: float#
- minimum strain_value in the stress-strain_value-relationship 
 - property section_type#
- section section_type 
 - property strains: list#
- strains from the stress-strain_value-relationship 
 - property stress_strain: list[m_n_kappa.material.StressStrain]#
- list of stress-strain_value points 
 - property stresses: list#
- stresses from the stress-strain_value-relationship 
 - property tension_stress_strain: list#
- stress-strain-relationship under tension (positive sign)